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Abstract

The origin and evolution of snakes has been marked by the acquisition of many
morphological and functional novelties, one of which is the possession of a highly
kinetic skull allowing for the consumption of prey that are often larger than their
head diameter. One feature of the iconic wide gape of macrostomate (large-mouthed)
snakes is due to changes in the rostral midline where the left and right hemi-mandible
come together. Across vertebrates, the two sides of the lower jaw are held together by
the mandibular symphysis. In snakes, the two halves of the lower jaw do not fuse and
the symphysis remains free, facilitating gape expansion. The symphysis has previously
been explored in lizards and crocodiles, where ligamentous fibres and cartilages span
the joint. Here, we compared the anatomy of the forming ‘free’ mandibular symphysis
in the corn snake (Pantherophis guttatus) to symphysis development in two lizards,
the veiled chameleon (Chamaeleo calyptratus) and the ocelot gecko (Paroedura picta),
and an outgroup sauropsid, the chicken (Gallus gallus domesticus). Microcomputed
tomography imaging, whole-mount skeletal staining and histology staining confirmed
the absence of bone and cartilage fusion at the mandibular symphysis in the corn
snake during development, in contrast to the complete fusion of cartilage, but not
bone, in both lizards and the fusion of the bone in the chick. Trichrome staining
under circular polarised light and whole fast green staining highlighted that, while the
symphyseal region was populated by a dense network of collagen fibres, the snake
hemi-mandibles were not connected across the rostral region by this fibrous network.
Instead, collagen fibres extended backwards and around the snake mental groove
to an intermandibular nodule. This nodule attached to the midline dorsally, allowing
integration of the movement of the soft and hard tissues. Our analysis highlights the
adaptations required to allow extreme lower jaw mobility and independence of the
two sides of the jaw as found in macrostomate snakes.
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1 | INTRODUCTION

The origin and evolution of snakes has been marked by the acquisi-
tion of many morphological and functional novelties, such as body
elongation and loss of limbs (Cohn & Tickle, 1999; Gans, 1975; Head
& Polly, 2015; Kvon et al., 2016; Sanger & Gibson-Brown, 2004;
Wiens & Slingluff, 2001) and high cranial and mandibular kinesis
allowing for macrostomy (Da Silva et al., 2018; Kardong, 1977;
Pandelis et al., 2023; Rhoda et al., 2021; Scanlon & Lee, 2000).
Snake skulls have the highest degree of cranial kinesis among
tetrapods (Gans, 1961). Snakes are divided into two infraorders:
Scolecophidia and Alethinophidia. As snakes have adapted a
sizeably elongated body, Scolecophidia and Alethinophidia have
both evolved different ways of sustaining the resulting consider-
able mass. Through a comparatively small mouth, the plesiomor-
phic non-macrostomate Scolecophidia consume vast numbers of
prey at a rapid rate (Gans, 1961; Pough et al., 2015). In contrast,
Alethinophidia consume fewer but dimensionally much larger prey
(Pough et al., 2015). To allow for this, they have pronounced man-
dibular kinesis to support a wide lateral gape (Boltt & Ewer, 1964;
Cundall & Greene, 2000; Gans, 1961; Greene, 1997; Kojima
et al., 2020; Shine & Wall, 2008).

High mandibular kinesis in snakes is possible due to three
novel and adapted joints that allow the lower jaw to move inde-
pendently and aid unilateral feeding (Gans, 1961; Kley, 2001; Kley
& Brainerd, 1999): (1) an extremely flexible quadrate-articular joint
(joining the lower jaw to the upper jaw); (2) an additional mobile joint
between the tooth-bearing dentary bone and the caudal compound
bone, known as the intramandibular hinge; and (3) a highly extensi-
ble mandibular symphysis at the rostral midline. In addition to these
skeletal changes, snakes possess an elasticated and multi-pleated
skin to support the mandibular structure and allow for large prey
consumption (Close & Cundall, 2014). At rest, the skin lies within a
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longitudinal fold on the underside of the snake head, known as the
mental groove (highlighted on the corn snake (Pantherophis guttatus)
in Figure 1).

This work focuses on the mandibular symphysis. In most tet-
rapods, the two lateral halves of the mandible come together at
the midline, although using a variety of mechanisms. The mandible
can be united by fusion of the dentary bone, as observed in hu-
mans or by creation of a suture at the dentary or by fusion of the
two rods of Meckel's cartilage which run throughout the lower
jaw (Becker, 1986; Svandova et al., 2020). Crocodilians possess
mandibular symphyses bridged by sutural ligaments and Meckel's
cartilage (Holliday & Nesbitt, 2013; Lessner et al., 2019). Varanids
have been reported to have both unfused dentary bones and un-
fused Meckel's cartilage at the symphyseal midline, with the two
sides of the jaw connected by a fibrocartilage and fibrous tissues
at the rostral tip (Holliday et al., 2010). The mandibular symphyses
of non-macrostomate Scolecophidia have been shown to retain
a plesiomorphic morphology similar to lizards, presented as tight
but unfused dentaries (Bellairs, 1984; Gans, 1961; Kley, 2001,
2006; Kley & Brainerd, 1999). The two arms of Meckel's cartilage
were initially reported as fusing in Scolecophidia, but closer anal-
ysis showed that the two ends of Meckel's cartilage in fact did not
fuse but were united in the midline by a cartilage and dense con-
nective tissue (Cundall & Greene, 2000; Kley, 2006). This cartilage
bridging Meckel's cartilage was evident in both Typhlopidae and
Leptotyphlops blind snakes and was suggested to be composed of
fibrocartilage rather than hyaline cartilage (Bellairs & Kamal, 1981;
Kley, 2006).

The anatomy of the mandibular symphysis in macrostomate
Alethinophidia is not as well documented, but a fibrocartilage at
the midline has been suggested (Holliday et al., 2010; Kley, 2001).
However, skeletal preparations of the developing Central African

rock python (Python sebae) and hissing sand snake (Psammophis

FIGURE 1 The mental groove allows for stretch during corn snake feeding. (a) Ventral head scale positioning at rest before feeding. (b)
Ventral head scale positioning during active feeding. (c) Ventral head scale positioning immediately after feeding. Lower labial scales are
labelled as ventral head scales 1 and 2 (green), while chin shield scales are labelled as ventral head scales 3 and 4 (red) (Hsu et al., 2017). The

positioning of the mental groove is pointed out by the black arrows.
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sibilans) highlight that the two arms of Meckel's cartilage do
not meet at the midline, and there was no evidence of the de-
velopment of an Alcian blue-stained cartilage in the midline (Al
Mohammadi et al., 2020; Boughner et al., 2007). Bellairs (1984)
illustrated that the free mandibular symphysis in macrosto-
mates was held together at the midline by lateral ligaments
connecting the two rostral tips of the mandible to an interman-
dibular nodule (IMN) positioned at the midline further back in
the jaw. This nodule is also referred to as the mid-ventral raphe
(Groombridge, 1979), the corpus musculo-fibrosus (Kiran, 1981) or
the fibrous interramal pad (Langebartel, 1968). Muscle fibres of
the intermandibularis anterior (IMA) have been shown to run from
the rostral tip of the dentary and backwards towards this nodule,
controlling the stretch of the lower jaw (Cundall & Greene, 2000;
Groombridge, 1979). In the common pipe snake (Cylindrophis ruf-
fus), which has a relatively small gape size, two midline structures
were described: a fibrocartilaginous interramal pad and intergu-
lar pad (Cundall, 1995). The intergular pad consisted of compact
and bundled parallel-running collagen fibres and was associated
with the mental groove. The intergular pad of the common pipe
snake had limited elastic properties and permitted only partial
spreading of the dentary tips (Cundall, 1995). An elastic ligament
directly connecting the left and right sides of the snake's lower
jaw has been presumed in the literature (Greene, 1997; Hampton
& Moon, 2013). For example, a ligament was noted running be-
tween the two arms of Meckel's in the Mexican burrowing python
(Loxocemus bicolor) (Groombridge, 1979). However, whether this is
also evident in snakes with pronounced intermandibular kinesis is
unclear. As such, the composition of the mandibular symphysis in
macrostomate snakes merits further investigation.

This work compares the microanatomy of the mandibular sym-
physeal gap in the developing snake, compared to that in other
sauropsids of a similar age, via 3D reconstruction, imaging of col-
lagen fibres and histological assays. Symphyseal structures were
observed in late-stage embryos and newborn hatchlings to follow
the final development of this region prior to feeding and to identify
any rudimentary structures that might be lost in adults. Two alter-
native hypotheses for the young snake mandibular symphysis were
tested: the connection across the symphyseal gap between the two
dentary bones is bridged by (A) a midline intermandibular nodule
or (B) flexible ligaments running directly across the rostral midline.

In this study, we focus on the corn snake, Pantherophis guttatus
(infraorder Alethinophidia, family Colubridae). The corn snake is
a macrostomate member of the largest snake family, housing ap-
proximately 52% of all snake species (Figueroa et al., 2016). The
corn snake is an oviparous non-venomous constrictor, making it
a potential lab model (Bealor & Saviola, 2007). In order to explore
the snake mandibular joints within the context of other saurop-
sids, the symphysis was compared to that of the veiled chameleon
(Chamaeleo calyptratus), the ocelot gecko (Paroedura picta), and an
outgroup species, the domestic chicken (Gallus gallus domesticus).
These species were selected due to availability of embryonic and
hatchling tissue.
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2 | MATERIALS AND METHODS
2.1 | Sample collection for experimental work

Sixteen embryos, hatchlings and juvenile snakes and lizards were sac-
rificed for symphyseal analysis (Table S1). A small breeding colony of
P. picta and P. guttatus was housed at King's College London Biological
Services Unit at Guy's Hospital and mated for breeding. C. calyptratus
eggs were purchased from a breeder. Reptile eggs were incubated
at 28°C on humid hatching substrate until hatching. Embryos and
hatchlings were culled using schedule 1 methods as approved by the
UK Home Office. All specimens were pithed to destroy the brain.
Dissected heads were fixed in 4% paraformaldehyde and then pro-
cessed through an ethanol series for storage in 100% ethanol or were
fixed directly in 95% ethanol. Developmental staging of P. picta gecko
embryos was based on Griffing et al. (2019). G. gallus domesticus
chicken eggs were bought from Henry Stewart (Medeggs) and incu-
bated at 37°C. Embryos were collected at embryonic days 10, 12 and
14 (developmental staging based on Hamburger & Hamilton, 1992),
with E12 and E14 chicks ultimately used for analysis here. To image
the snake jaw when fully extended, an 8-week-old snake was culled
as above, but after pithing, the jaw was held open by wires at the
intramandibular hinge during fixation (Figure S1).

2.2 | Imaging the feeding snake

The change in gape during feeding was filmed in a corn snake
(3-year-old male eating a defrosted dead mouse). Stills are shown
in Figure 1. The snake was fed in a glass-bottomed vivarium with a

camera underneath.

2.3 | 3Dreconstructions of sauropsid lower jaws

Lower jaws were dissected from their respective heads after fix-
ing in 4% paraformaldehyde and washing in PBS. The lower jaws
were scanned at King's College London, Centre for Craniofacial and
Regenerative Biology using a SCANCO Medical microCT 50 scan-
ner, using scan settings at energy/intensity 90kV/88 pA, with voxel
sizes from 4.4pum to 6 pum. Additional chick samples were scanned at
University College London, Centre for Integrative Anatomy using the
Nikon XT H225 CT scanner, using X-ray settings which ranged from
58kV/138pA to 68kV/138 A, with voxel sizes from 8.2 pm to 9.3 um.
Scan settings were optimised for each individual specimen. 3D seg-

mentation of microCT scans was completed on Amira 3D 2021.1.

2.4 | Histology

Lower jaws were dissected and decalcified in 0.5M EDTA, before
dehydrating in ethanol, clearing in xylene and embedding in paraffin
wax. The samples were sectioned in frontal and transverse planes at
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8 um, then mounted onto glass slides. Sectioned tissues were stained
using a standard Alcian blue/Sirius red staining technique for car-
tilage and bone, respectively, with haematoxylin for nuclear stain-
ing, using a Thermo Fisher Gemini AS automated slide stainer. Slides
were viewed and imaged via standard light microscopy (histology)
and polarised light microscopy (collagen birefringence) (Constantine
& Mowry, 1968) using a Keyence digital microscope.

(a)

—— Pantherophis guttatus
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2.5 | Skeletal preparation of corn snake heads

Corn snake heads were sacrificed and fixed in ethanol. Skin, brain
and fat tissue were removed before placing in 95% ethanol to ensure
proper dehydration. The samples were immersed in 100% acetone for
further removal of adipose tissue for 2-5hours, then for 3-5days in

fresh acetone depending on size. For staining cartilage, the samples

Chamaeleo calyptratus

Paroedura picta

(d)

Gallus gallus

FIGURE 2 3D reconstructions of sauropsid lower jaws reveal dentary relationships. (a) A cladogram representing the relationship
between the four sample species: P. guttatus (corn snake), C. calyptratus (veiled chameleon), P. picta (ocelot gecko) and G. gallus (chicken).

(b) Dorsal (left) and ventral (right) views of the whole lower jaw of a newborn corn snake hatchling, highlighting the Meckelian groove

(blue) on the lingual side of the dentary, which denotes the placement of Meckel's cartilage at the rostral tip. (c) Dorsal (left) and ventral
(right) views of the whole lower jaw of a 2-week-old juvenile veiled chameleon, highlighting the rostroventral Meckelian groove on the
dentary. (d) Dorsal (left) and ventral (right) views of the whole lower jaw of an E51 ocelot gecko, also highlighting the Meckelian groove on
the rostroventrolingual side of the dentary. (e) Dorsal (left) and ventral (right) views of the whole lower jaw of an E14 domestic chicken,
highlighting the presence of a symphyseal fusion at the rostral tip, thus displaying a singular fused lower jaw unit, and the Meckelian groove
nested on the dorsal side of the rostral tip. Lower jaw orientation displayed from C=caudal end (upwards) to R=rostral tip (downwards).
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were placed in an Alcian blue staining solution (0.3% Alcian blue 8GX
in 70% ethanol), followed by bone staining in Alizarin red (0.1% Alizarin
red S in 1% aqueous potassium hydroxide, KOH). After staining, the
samples were cleared in 1% aqueous KOH. Once the samples were
sufficiently cleared, they were placed in a glycerol:aqueous KOH series
rising from 20% to 100% glycerol for storage at room temperature.

2.6 | Fastgreen staining

Fine collagen fibre orientations at the mandibular symphysis were
explored via fast green staining under anhydrous conditions (Timin &
Milinkovitch, 2023). The durations of sample bleaching, KOH treat-
ment and fast green staining were adjusted to accommodate for differ-
ent jaw sizes, and nuclear staining was instead achieved using 1/1000
Hoescht +0.1% DMSO in PBST (1x PBS+0.5% Triton X). The stained
samples were placed onto a glass slide, and a well of petroleum jelly
was created around the sample, ensuring no holes were present to

C. calyptratus

mg
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avoid clearing agent dibenzyl ether (DBE) leakage. Two to three drops
of fresh DBE were placed onto the enclosed sample; then, using a
glass coverslip, the sample was covered and slightly flattened. Excess
DBE was removed to assure a clean slide for confocal microscopy.
The stained samples were imaged using a Zeiss LSM 980 confocal mi-
croscope. Image contrast was increased using image analysis via Fiji.
Filters were applied to colour code the fibre by their depth/Z-position.

3 | RESULTS

3.1 | Absence of hemi-mandibular dentary or
Meckel's cartilage fusion in the corn snake

Macrostomate snakes are known to have adopted a unique expansive
gape. The expansion of the jaw during feeding can be appreciated by
comparing the spacing of the mandible scales of the snake while at rest
versus during active feeding (Figure 1a,b). The mental groove is evident

FIGURE 3 Cartilage arrangement at the rostral midline in embryonic and young sauropsids. Trichrome-stained transverse (upper row)
and frontal (lower row) sections of the mandibular rostra in developing sauropsids. (a) Transverse and (b) frontal sections from an E51 and
pre-hatching corn snake embryos (respectively), showing the presence of Meckel's cartilage (blue) at the rostral tip and its further rostral
extension past the dentary (red) tip, although it does not join at the rostral midline, which location is signified by the position of the mental
groove. (c) Transverse and (d) frontal sections from juvenile veiled chameleons, showing the fusion of Meckel's cartilage at the rostral tip.

(e) Transverse and (f) frontal sections from an E51 and pre-hatching ocelot geckos (respectively), showing the fusion of Meckel's cartilage at
the rostral tip also. (g) Transverse E12 and (h) frontal E14 chick sections, showing the presence of Meckel's cartilage at the rostral tip of the
lower jaw but failure to fuse at the rostral midline despite a fusion between the two sides of the dentary. Histological sections were stained
with Sirius red (bone), Alcian blue (cartilage) and haematoxylin (nuclei and counterstaining). d, dentary; m, midline; mg, mental groove; Mk.c,
Meckel's cartilage; t, tooth. Transverse section orientation displayed from C=caudal to R=rostral. Frontal section orientation displayed from

D=dorsal to V=ventral.
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at the midline of the snake's lower jaw and accommodates the excess
skin between the midline scales (Figure 1b,c). The mandible returns to
its original configuration immediately after feeding, suggesting active
contraction (Figure 1c). A malleable mandibular symphysis allows for
the wide lateral gape; however, the degree of skeletal liberation at this
joint is unclear. To compare the anatomy of the dentary bone at the
symphysis at rest, the two arms of the dentary bones were visualized in
3D by microCT in a selection of sauropsid species (Figure 2a). Agreeing
with previous reports, the rostral ends of the corn snake dentary bones
were unfused at the midline, creating a considerable osteological gap
in the region of the symphysis (Figure 2b) (Al Mohammadi et al., 2020).
The lower jaw of the veiled chameleon and ocelot gecko also showed
unfused dentary bones at the midline, with a thin osteological gap sep-
arating the two sides of the jaw (Figure 2c,d respectively). In contrast,
the dentary bones had fused at the symphysis in the developing chick's
lower jaw (Figure 2e).

Cartilage is not visible by microCT without the use of counter-
stains, although the position of the cartilage within the dentary can
be inferred from the presence of a groove in the dentary (Figure 2b-
e). In order to visualize the cartilage arrangements at the symphysis,
histology was performed in the four species. In the late-stage em-
bryonic corn snake, Meckel's cartilage extended rostrally past the
dentary tip and curved upwards but did not join at the rostral midline
(Figure 3a,b). In contrast, Meckel's cartilage was observed to bridge
the gap in the 2-week-old veiled chameleon (Figure 3c,d) and late-

stage embryonic ocelot gecko (Figure 3e,f). Both lizard symphyses,
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therefore, have cartilage running across the midline uniting the two
sides of the jaw. Interestingly, in the developing E12 (Figure 3g) and
E14 chick (Figure 3h) lower jaw, the rostral tips of Meckel's cartilage
extended towards each other at a very close proximity but did not
join at the midline, despite the chick possessing a fused mandibular
symphysis at this developmental stage. The relationship of the den-
tary and Meckel's cartilage in the corn snake was further assessed
in 3D by skeletal prep (Figure 4). During late embryonic stages,
Meckel's cartilage extended past the dentary (Figure 4a,b), curving
upwards rather than towards the midline (Figure 4b). At hatching,
this extension of Meckel's cartilage appeared as a slender projec-
tion, which, due to its size, was unlikely to have a major load-bearing
role (Figure 4c). No evidence of a cartilage bridging the two rods of
Meckel's cartilage, as described in Scolecophidia, was observed in

the corn snake by histology or skeletal prep.

3.2 | Absence of direct fibrous hemi-mandibular
linkage in the corn snake

Macrostomate snakes have been proposed to possess an elastic
connection at the mandibular symphysis, but the experimental
evidence for this is lacking. To investigate this further, we in-
vestigated the developing symphysis in the corn snake at E51 by
histology (Figure 5). In the most rostral region, Meckel's cartilage

was closely associated with the intermandibularis anterior muscle

500pm

FIGURE 4 Cartilage arrangement at the rostral midline in embryonic and hatchling corn snake mandibles via whole skeletal staining. (a,

b) A whole mount pre-hatching corn snake embryo head stained with Alcian blue for cartilage detection. Meckel's cartilage (white arrows)

is present at the rostral tip of the lower jaw which extends further rostrally past the dentary tip (outlined in red), although it does not join at
the rostral midline, shown at frontal (a) and ventral (b) planes. (c) A whole mount newborn hatchling corn snake head stained with Alizarin red
and Alcian blue for bone and cartilage detection (respectively) highlights the fineness of the rostrally extending Meckel's cartilage tip at the
hatching stage. Frontal plane orientation is displayed from D=dorsal to V=ventral. Ventral plane orientation is displayed from C=caudal to

R=rostral.
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FIGURE 5 Relationships of the intermandibularis anterior muscle, intermandibular nodule and mental groove in the corn snake. (a)
Transverse section of the rostrum of a near-hatching corn snake, highlighting the plane of section shown in b, c and d. (b) Most rostral
frontal section of near-hatching corn snake. The intermandibular nodule is indistinct at the level. (c) More caudal section through the same
specimen. The intermandibular nodule is more defined at this level with the intermandibularis anterior muscles connecting the hemi-
mandibular tips to the intermandibular nodule. A fine band of tissue connects the nodule to the mental groove. (d) Further caudal frontal
section of the rostrum in a younger corn snake (E51), highlighting the connection of the hemi-mandibles to the intermandibular nodule via
the intermandibularis anterior muscles, but not directly to each other. bs, blood sinus; d, dentary; ima, intermandibularis anterior muscle;
imn, intermandibular nodule; mg, mental groove; Mk.c, Meckel's cartilage; sgl, salivary glands; t, tooth. Transverse section orientation
displayed from C=caudal to R=rostral. Frontal section orientation displayed from D =dorsal to V=ventral. Structure identification based on

Bellairs (1984).

(IMA) (Figure 5a,b) (Groombridge, 1979). More caudally, the IMA
inserted on a region of condensed mesenchyme in the midline,
which resembled the intermandibular nodule (IMN) as described
by Bellairs (1984) (Figure 5c,d). The IMN was physically tethered
to the tissue of the mental groove by a narrow band of connec-
tive tissue (Figure 5c). This would act to keep the mental groove
aligned with the overlying nodule. Strikingly, a large space was evi-
dent under the muscle mass, which would have allowed the skin
to move independently of the rest of the mandible at this rostral
region (Figure 5b,c). Further back in the jaw, at the level of the tips
of the dentary, the IMA muscle could be seen inserting into the
midline nodule, running from the dentary (Figure 5d). At this posi-
tion, the mental groove was now attached to the adjacent connec-
tive tissue. Partly due to the presence of the mental groove, there
was no evidence of lateral ligaments running between the tips of
Meckel's cartilage when viewed by histology.

In order to investigate the arrangement of fibrous connections
across the symphysis, the arrangement of collagen fibres was in-
vestigated using two techniques. Collagen birefringence was used
to assess the patterns of collagen fibres in Sirius red-stained sec-
tions in 2D (Figure 6a,e,i), while whole mount fast green staining was
used to visualise the fibres in 3D (Figure 6b-d,f-h). In the corn snake,
agreeing with the histology images, collagen fibres were observed
running parallel to the length of Meckel's cartilage at the mandibular
rostrum (Figure 6a). No collagen connection was observed between
the hemi-mandibles at the rostral tip of the corn snake. In contrast,
the mandibular rostra of the embryonic gecko (Figure 6€) and young
chameleon (Figure 6i) exhibited woven collagen fibres which ran
across the mandibular symphyses, bridging their respective sym-
physeal gaps. In 3D, collagen fibres could be observed surrounding
the tips of Meckel's cartilage at the snake symphyseal gap and did
not bridge the two mandibular sides at the midline (Figure éb,c).
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FIGURE 6 Collagen fibre orientation at the symphysis of embryonic sauropsids. The presence of collagen fibres was explored via

the exploitation of collagen birefringence in trichrome-stained transverse mandibular rostrum sections (a, e and i) viewed under circular
polarised light. The fibrous profiles of the unfused snake (b-d) versus the fused gecko (f-h) symphysis were further explored via anhydrous
fast green staining. (a) Mandibular symphyseal collagen in a newborn corn snake surrounded the dentary and cartilage (blue) tips but did
not connect the two sides together. This was shown in clearer detail (b, c), where individual collagen fibres skirt the edges of the cartilage
tips but do not provide contact between the two sides. (d) Filters applied to colour code the fibre by their depth/Z-position. In contrast,
collagen fibres in the (e) pre-hatching gecko run across the symphyseal gap, thus connecting the two sides of the dentary. (f, g) This fibrous
connection is shown in clearer detail, where collagen fibres bridge the two dentary tips at the mandibular symphysis of the gecko. (h) Filters
applied to colour code the fibre by their depth/Z-position. (i) The collagen fibres in the hatchling chameleon also run across and connect at
the symphyseal gap. Transverse plane orientation displayed from C=caudal to R=rostral.

The fibres running parallel to the midline had a wavy morphology
suggesting they were not under tension (Figure éc,d). More poste-
riorly, some transverse fibres were evident inserting near the mid-
line (Figure 6b). We used the same fast green imaging technique to
view the developing symphysis in the embryonic gecko, which dis-
played fine collagen fibres connecting the dentary tips at the midline
(Figure 6f,g). These fibres appeared under tension (Figure 6h), high-
lighting a clear difference in the jaw anatomy at the symphysis in the
corn snake and gecko.

The experimental work conducted above utilised snakes with a
relaxed jaw positioning. In order to observe changes in fibre pat-
tern during feeding, imaging was repeated on a corn snake that had
had its jaws pinned wide immediately after culling (Figure 7a). Using
whole mount fast green staining, the IMN was prominent in the mid-
line, consisting of a dense network of parallel fibres (Figure 7b,c).

From the IMN taut fibres were evident running towards the splayed
dentary bones (Figure 7d,e), compared to the closed/resting jaw
state of the same species (Figure 2b). The dentary bones are, there-
fore, supported by fibres that run from the IMN.

4 | DISCUSSION

4.1 | A comparison of the mandibular symphysis in
sauropsids

Variations in the degree of liberation of the mandibular symphy-
sis can be tracked through the sauropsid lineage (Figure 8). In the
chick, the dentary bones fused at the symphysis during develop-
ment, agreeing with the current avian literature (Bailleul et al., 2017
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FIGURE 7 The anatomy and collagen fibre orientation at the symphysis of a ‘stretched’ corn snake mandible. The fibrous profiles of the
stretched corn snake mandibular symphysis were explored via anhydrous fast green staining. (a) A 3D model dorsal view of the stretched
lower jaw of an 8 week old juvenile corn snake. (b) A dorsal view of the fast green-stained stretched jaw, highlighting the positions of the
dentaries (in red), the intermandibular nodule and the intermandibular muscles. The dense collagen fibre network of the intermandibular
nodule at the rostral midline (c) and the adjacent collagen fibres in between the intermandibular nodule and the left rostral dentary tip (d, e)
are shown in greater detail. (e) Filters applied to colour code fibre by depth/Z-position. ima, intermandibularis anterior muscle. Transverse

plane orientation displayed from C=caudal to R=rostral.

Choudhary et al., 2020; James, 2004; Prondvai & Stein, 2014). Fused
dentaries are also found in birds with pouch-like beaks, such as the
pelican, which possesses flexible mandibular rami that allow large
feeding volume capacity (Field et al., 2011; Meyers & Myers, 2005;
Witton & Naish, 2013). Interestingly, Meckel's cartilage had not
fused at the embryonic stages investigated in the chick, potentially
as the surrounding fused dentary made further fusion of Meckel's
cartilage redundant. In primates, a fused mandibular symphysis has
been demonstrated to correlate to a stronger bite force (Lieberman
& Crompton, 2000; Ravosa & Vinyard, 2020); however, a similar re-
lationship is unlikely to be true in avians due to their pronounced
streptognathy.

In contrast to the chick, the gecko and chameleon possessed an
unfused dentary at the symphyseal midline, which would be pre-
dicted to allow some flexibility in this region. This has also been
shown in the bearded dragon (Pogona) and monitor lizard (Varanus)
(Holliday et al., 2010). Although the dentary bones did not fuse in
the midline, a cartilaginous connection was evident in the two liz-
ards analysed due to fusion of Meckel's cartilage across the mid-
line (gecko, chameleon) (Figure 3c-f). This appears different from

Varanus, where the rods of Meckel's cartilages do not fuse but are
united by a distinct fibrocartilage at the rostral midline (Holliday
et al., 2010; Torres-Carvajal, 2003). A cartilaginous symphysis ar-
rangement in lizards would be predicted to allow some degree of
hemi-mandibular mobility. Previous observations have shown that
geckos move their prey in their mouths to aid in proper swallowing,
and a kinetic jaw allows for better shock absorption when snapping
their mouths (Bellairs & Carrington, 1966; Reilly & McBrayer, 2007).
However, these same observations have noted that while some
hemi-mandibular mobility is present, fortified bites are evident and
are as equally important for the consumption of harder prey (Bellairs
& Carrington, 1966; Reilly & McBrayer, 2007). Fine collagen fibres
were evident bridging the hemi-mandibles at the rostral tips in the
gecko and chameleon, agreeing with similar fibres shown in other
lizards (Holliday et al., 2010).

In contrast, both the dentary bones and Meckel's cartilage
were unfused in the corn snake. The degree of mobility was ev-
ident by comparing scans of the lower jaw at rest (Figure 2) and
when stretched open (Figure 7). The presence of a fibrocar-
tilage uniting the ends of Meckel's cartilage has been shown in
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FIGURE 8 Schematic showing the relationships of the skeletal elements of the symphysis. The following structural elements at the rostral
tip are displayed: The dentary bone (from microCT scan), Meckel's cartilage (blue), fibrous collagen network (grey) and intermandibular
nodule depicted in A (solid grey structure). (a) Newborn corn snake hatchling mandibular symphysis at ventral (left) and frontal (right)

views. (b) Two-week veiled chameleon juvenile mandibular symphysis at ventral (left) and frontal (right) views. (c) Developing E51 ocelot
gecko mandibular symphysis at ventral (left) and frontal (right) views. (d) Developing E14 chick mandibular symphysis at dorsal (left) and
frontal (right) views. Transverse plane orientation displayed from C=caudal end to R=rostral tip and M=medial to L=Iateral. Frontal plane
orientation displayed from D=dorsal to V=ventral and M=medial to L=Iateral.

Scolecophidia and has been proposed to be present in the com-
mon watersnake (Nerodia sipedon) (Holliday et al., 2010; Kley,
2006). No evidence was observed of a cartilage forming between
the two rods of Meckel's cartilage in the corn snake from histol-
ogy or skeletal preps, agreeing with previously published skeletal
preps (Al Mohammadi et al., 2020; Boughner et al., 2007). It is
possible, however, that an early condensation formed in this re-
gion, but never chondrified. This could be tested by assessing the
expression of the chondrocyte master regulator Sox9 at earlier
stages. A connecting fibrocartilage may, therefore, have been lost
during the evolution of macrostomate snakes, as a step towards a

large gape. The potential nodule observed in N. sipedon (Holliday
et al.,, 2010) may have been the more caudally positioned inter-

mandibular nodule.

4.2 | The microanatomy of a compliant mandibular
symphysis in a macrostomate snake

In addition to the absence of a hard tissue connection at the midline,
there was no evidence of any ligamentous tissue running directly tip
to tip between the two ends of Meckel's cartilage, as often portrayed
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in snake feeding literature. In fact, this would seem unlikely to occur
in any snakes with a pronounced mental groove, where space is
required for the infolding of the midline skin. Some transverse fibres
might be located more ventrally in the jaw but not attach to the
dentary and Meckel's cartilage themselves. Instead, the muscles and
collagen fibres were shown to run parallel to the midline, not across
it in the corn snake at rest (Figure 5). The collagen fibres were wavy
in the resting position and taut in the stretched jaws, mimicking
the normal changes during feeding. The hyperextensible IMA
muscles (Close et al., 2014) attached to the dentary and continued
backwards to insert on the intermandibular nodule (IMN). This
nodule was physically tethered to the mental groove by a narrow
region of connective tissue, spanning a noncellular region (Figure 6).
This arrangement would allow coordinated movement of the skin of
the mental groove and the midline connective tissue, while allowing
some independent expansion.

The IMN of the reduced gape pipe snake has been described
as fibrocartilaginous, sitting on a pad of compact collagen fibres
(Cundall, 1995). In vipers, in contrast, the nodule was described as
composed of dense fibrous tissue (Bellairs, 1984). Similarly, the IMN
in the corn snake appeared to be composed of a dense meshwork of
fibres (Figure 7). The nodule did not strongly express Alcian blue at
any of the stages analysed, and the cells did not have the rounded
appearance characteristic of cartilaginous cells under histology. It
would therefore be useful to provide some molecular analysis in the
corn snake to identify the cell type of the IMN. The fibrous IMN in
the hatched corn snake appeared similar to the intergular pad de-
scribed in the pipe snake (Cundall, 1995). During the evolution of
macrostomy in alethinophidian snakes, the composition of this nod-
ule might have shifted from fibrocartilaginous to fibrous in order to
provide greater elasticity at the midline region.

The anatomical arrangement of muscles, collagen fibres, mid-
line nodule and mental groove would be predicted to prevent over-
stretching and aid in rapid retraction of the two sides of the jaw,
as observed after feeding (Figure 1). A number of changes to the
soft tissues at the symphysis would, therefore, have been necessary
to accommodate the loss of connection of hard tissue at the mid-
line. Future work could involve functional testing of the different
components of the symphysis. For example, the role of fibre pattern
could be tested by disrupting collagen fibre cross-linkage to assess
the impact on jaw mobility. Pharmacological inhibition in reptile em-
bryos has recently been successfully carried out in ovo, while snake
tissue explants have been cultured to manipulate ex vivo (Gaete &
Tucker, 2013; Santos-Duran et al., 2025), providing potential meth-

ods for carrying out manipulations.
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